Modeling the regulation of the competence-evoking quorum sensing network in Streptococcus pneumoniae
نویسندگان
چکیده
Competence for genetic transformation seems to play a fundamental role in the biology of Streptococcus pneumoniae and is believed to account for serotype switching, evolution of virulence factors, and rapid emergence of antibiotic resistance. The initiation of competence is regulated by the quorum sensing system referred as the ComABCDE pathway. Experimental studies reveal that competence is down-regulated a short time after its induction and several hypotheses about the mechanism(s) responsible for this shut-down have been presented. Possibly, a ComX-dependent gene product, such as a repressor or a phosphatase, is involved. To better understand the down-regulation of the competence-evoking system in S. pneumoniae, a mathematical model was set up. By analyzing the model, we suggest that shut-down of competence possibly occurs at the transcriptional level on the comCDE operon. As a result of introducing a putative comX-dependent repressor, which inhibits expression of comCDE and comX, in the mathematical model, competence is demonstrated to appear in waves. This is supported by experimental studies showing the appearance of successive competence cycles in pneumococcal batch cultures.
منابع مشابه
Quorum Sensing Regulation of Competence and Bacteriocins in Streptococcus pneumoniae and mutans
The human pathogens Streptococcus pneumoniae and Streptococcus mutans have both evolved complex quorum sensing (QS) systems that regulate the production of bacteriocins and the entry into the competent state, a requirement for natural transformation. Natural transformation provides bacteria with a mechanism to repair damaged genes or as a source of new advantageous traits. In S. pneumoniae, the...
متن کاملIdentification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation.
Competence for genetic transformation in Streptococcus pneumoniae is regulated by a quorum-sensing system encoded by two genetic loci, comCDE and comAB. Additional competence-specific operons, cilA, cilB, cilC, cilD, cilE, cinA-recA, coiA, and cfl, involved in the DNA uptake process and recombination, share an unusual consensus sequence at -10 and -25 in the promoter, which is absent from the p...
متن کاملComX activity of Streptococcus mutans growing in biofilms.
In many streptococci, including Streptococcus mutans, genetic competence is regulated by a quorum sensing system mediated by a competence stimulating peptide (CSP) pheromone, encoded by the comC gene. In Streptococcus pneumoniae, a central component of this system is ComX, which acts as an alternative sigma factor to activate competence genes involved in DNA uptake and processing. The quorum se...
متن کاملCompetence in Streptococcus pneumoniae Is Regulated by the Rate of Ribosomal Decoding Errors
UNLABELLED Competence for genetic transformation in Streptococcus pneumoniae develops in response to accumulation of a secreted peptide pheromone and was one of the initial examples of bacterial quorum sensing. Activation of this signaling system induces not only expression of the proteins required for transformation but also the production of cellular chaperones and proteases. We have shown he...
متن کاملCoordinated Bacteriocin Expression and Competence in Streptococcus pneumoniae Contributes to Genetic Adaptation through Neighbor Predation
Streptococcus pneumoniae (pneumococcus) has remained a persistent cause of invasive and mucosal disease in humans despite the widespread use of antibiotics and vaccines. The resilience of this organism is due to its capacity for adaptation through the uptake and incorporation of new genetic material from the surrounding microbial community. DNA uptake and recombination is controlled by a tightl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bio Systems
دوره 90 1 شماره
صفحات -
تاریخ انتشار 2007